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The electronic and dynamic properties of metal nanowires are analyzed by using a minimal electron-gas
model �EGM�, in which the nanowire is treated as a close system with variable Fermi energy as a function of
nanowire radius. We show that the planar surface energy and the curvature energy from the EGM are reason-
ably consistent with those from previous stabilized-jellium-model calculations, especially for metals with low
electron densities. The EGM shell structure due to the fillings of quantum-well subbands is similar to that from
the stabilized jellium model. The crossings between subbands and Fermi energy level for the metal nanowire
correspond to cusps on the chemical-potential curve versus nanowire radius, but inflection points on the
surface-free-energy curve versus the radius, as in the case of metal nanofilms. We also find an oscillatory
variation in electron density versus radius at the nanowire center with a global oscillation period which
approximately equals half Fermi wavelength. Wire string tension, average binding energy, and thermodynamic
stability from the EGM are in good agreement with the data from previous first-principles density-functional
theory calculations. We also compare our model with those from previous reported free-electron models, in
which the nanowire is treated as an open system with a constant Fermi energy. We demonstrate that the
fundamental thermodynamic properties depend sensitively on the way that the potential wall is constructed in
the models.
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I. INTRODUCTION

Metal nanoclusters can be modeled by the electron con-
finement in a geometrically symmetric potential well, exhib-
iting the shell structures in physical properties.1–7 For metal
nanofilms, the confinement of electrons along the direction
perpendicular to film surface leads to the periodic oscilla-
tions of electronic properties as function of film
thickness.8–10 Similarly, for a metal nanowire, the radial
�spatially two-dimensional �2D�� quantum confinement of
electrons leads to the oscillations of electronic properties as a
function of wire radius, and correspondingly, this oscillation
spectrum can be referred to as the 2D shell structure. The
size dependency of physical properties of nanostructures has
been known as the quantum size effect �QSE�. Various
experiments11,12 and theoretical modelings13–15 show that
some radii of nanowires with certain microscopic configura-
tions can be particularly thermodynamically stable, and in
contrast, there are no stable nanowires observed in some spe-
cific regions of radii, which are therefore called the “stability
gaps.”16 Experimental measurements also reveal quantization
of electrical conductance in nanowires.17–19

Jellium-based models20,21 can effectively describe the en-
ergetics, dynamic properties, and electric transport properties
of metal nanowires. For example, the total energy per unit
length oscillates as a function of the wire radius, reflecting
the electronic shell structure of the system.22,23 In all these
studies, the nanowire is treated as a closed system. On the
other hand, the metal nanowire is also treated as an open
system in the free-electron model.24–29 In calculations of
thermodynamic properties, various assumptions about the
compressibility of the electron gas during its deformation
can lead to significant difference in macroscopic properties.

Urban et al.30,31 proposed to exploit this sensitivity by fitting
the free-electron model to specific materials. However, as a
comparison with the open system, an extensive study of the
free-electron model, in which the metal nanowire is treated
as a closed system, is still lacking.

In this paper, we present a detailed study of electronic and
dynamic properties of metal nanowires using the electron-
gas model �EGM� with an infinitely long cylindrical hard-
wall potential well. For a closed system, the number of elec-
trons is fixed while the radius of potential well is
appropriately chosen and the chemical potential �i.e., Fermi
energy level� will be determined as a function of the radius.
For an open system, the Fermi energy level is fixed while the
number of the electrons will be determined and it is radius
dependent. In Sec. II, we describe the details of our model.
In Sec. III, we first make an analysis for the asymptotic be-
havior toward large radii of the metal nanowire based on the
Weyl expansion. We will show the difference in planar sur-
face energy and curvature energy for both the closed and
open systems with different potential-well-boundary choices.
Then, we discuss the oscillation behavior �shell structure� of
various physical properties, mainly focusing on the closed
system. The analysis for the shell structure reveals that there
is a certain phase relation between the surface free energy
and the subband crossings, generalizing the results for metal
nanofilms.9,10 We show that for incompressible electron gas,
the subband crossings correspond to the inflection points on
the surface free energy curve versus radius. However, for
completely compressible electron gas in an open system, the
subband crossings correspond to the cusp positions on the
surface-free-energy curve versus radius. Finally we compare
the results from our model with the existing data from first-
principles density-functional theory �DFT� calculations. Sec-
tion IV gives the conclusion.
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II. MODEL

As in a jellium model, we assume that the positive charge
is uniformly distributed within a cylindrical nanowire with
infinite length. The boundary of potential well is at a distance
b from the jellium edge, as shown in Fig. 1. The effective
potential is simplified by an infinite barrier, i.e., the hard-wall
potential, and has the form

Ueff = �0, for � � r ,

� , for � � r ,
� �1�

where r�R+b is the radius of potential well and R is the
geometric radius of the wire. The physical motivation of b is
that in the jellium model for metal surface, electrons spill
over the boundary of the positive-charge distribution. An-
other perspective is that for electrons in a hard-wall potential,
there is depletion region near the hard-wall boundary. For a
half-infinite surface, Bardeen32 shows that by imposing a
zero surface-charge condition, the value of b is uniquely de-
termined by the potential-well height U0. Specifically b=0
for U0=EF �the bulk Fermi energy� and b=3�F /16 for U0
=�. We note that the result of b=3�F /16 can be also derived
from the Weyl expansion for the density of eigenmodes in a
cavity with Dirichlet boundary conditions.33 More on this
important parameter will be discussed later.

Solving the Schrödinger equation for a cylinder �super-
cell� with length L, which is periodic along the central axis
�as the z direction in cylindrical coordinates � ,� ,z� of the
nanowire, one can obtain the single-electron wave functions
as16

�n,l,kz
��,�,z� =

1

r��LJl+1�	n,l�
Jl	�	n,l

r

ei�l�+kzz�, �2�

where 	n,l is the nth zero of the Bessel function Jl�x� with
order l=0, 
1, 
2, . . ., and n=1,2 ,3 , . . .; kz=2�lz /L with
lz=0, 
1, 
2, . . .. The eigenenergies are

�n,l =
�2

2me

	n,l
2

r2 �
�2

2me
kn,l

2 , �3�

where me is the mass of an electron.
In k space, the states �i.e., the quantum-well subbands�

occupied by electrons compose a series of Fermi “rungs,” as
shown in Fig. 2, defined by

kz
2 
 kf

2 − kj
2, jn,�l� = 1,2, . . . ,I , �4�

where jn,�l� �hereafter referred to as j� denotes the quantum
numbers �n , �l�� with a rearrangement in an order from small
to big values of 	n,�l�, and the Fermi energy � f =�2kf

2 / �2me� is
defined as the highest occupied energy level, which corre-
sponds to the radius of the Fermi circle. It follows that the
maximum number I of Fermi rungs can be determined by
�I
� f ��I+1. Taking advantage of these Fermi rungs, the
total number of electrons can be obtained as

N = �
j=1

I

2�l
�kf

2 − kj
2 L

�
, �5�

where �l=1 for l=0 �twofold degeneracy� and �l=2 for other
�l� �fourfold degeneracy�.

For a metal nanowire with zero electric charge, the num-
ber of electrons is valency times the number of positive ions,
and therefore determined by the geometric radius R of the
nanowire. In free-electron models, the positive ions is not
explicitly referenced, instead one can define the geometric
radius to satisfy the relation

N � �R2Lwbulk, �6�

where wbulk�kF
3 / �3�2��8� / �3�F

3� is the average electron
density for bulk metal.10 Then, from Eqs. �5� and �6�, one can
obtain a relation for � f of the form

2�2

3
�2 = �

j=1

I

�l� � f

EF
−

	 j
2

4�2�2 , �7�

where ��R /�F, ��r /�F, and the bulk-metal Fermi energy
EF��2kF

2 / �2me�.
By means of Fig. 2, the total energy E of supercell can be

calculated as

FIG. 1. �Color online� Schematic illustration of a metal electron-
gas nanowire in a square-well potential with the surface-charge neu-
trality requirement. The dashed cylinder represents the geometrical
surface of the metal wire while the thick solid cylinder represents
the potential boundary.

FIG. 2. �Color online� The states occupied by electrons, illus-
trating as a series of Fermi rungs �green� within the Fermi circle
�red�.
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E = 2�
j=1

I

�l

0

km �2

2me
�kz

2 + kj
2�

L

�
dkz, �8�

where km��kf
2−kj

2. Completing the integration of Eq. �8�
and performing necessary algebraic operation yields

E

EF
=

4L

3�F
�
j=1

I

�l	 � f

EF
+

	 j
2

2�2�2
� � f

EF
−

	 j
2

4�2�2 . �9�

From the wave functions of Eq. �2� and by means of Fig.
2, the electron-density distribution w�� ,� ,z�=w��� can be
obtained as

w

wbulk
=

3

2�2�2�
j=1

I
�l

Jl+1
2 �	 j�

� � f

EF
−

	 j
2

4�2�2Jl
2	�	 j

r

 . �10�

Equations �5� and �7� can be applied to both a closed and
an open system. For a closed system, i.e., the metal nanowire
is considered as a canonical ensemble, N or R is a known
variable, and one needs to solve for � f by using Eq. �7�.
Here, we also need to know the value of r=R+b. As men-
tioned above, for R→�, b should be equal to 3�F /16 to
avoid net surface charge. However, for finite R, b cannot be
uniquely determined from the charge-neutrality requirement,
as one can freely choose � f. Here, as a minimal model, we

assume b to be a certain constant b̄ and b̄ is set to be 3�F /16,
i.e., the value for a planar semi-infinite plane.10 Such model
is referred as to the “constant-b model” hereinafter.

The excess energy due to the formation of surface is given
by

Es � 2�RL� = E − N�bulk, �11�

where � is defined as the surface free energy per unit area
and �bulk�3EF /5 is the per electron energy for bulk-metal
electron gas. The per electron energy for the metal nanowire
can be calculated as �=E /N with N and E expressed in Eqs.
�6� and �9�, respectively. The string tension �i.e., excess en-
ergy per unit length�14 is calculated as f =Es /L=2�R�. In the
following sections, we will discuss these quantities.

In a grand-canonical ensemble �open system�, the number
of electrons are variable while the Fermi energy � f is fixed. N
and E can be directly obtained from Eqs. �5� and �9� by
setting kf =kF and � f =EF. The grand-canonical potential can
be defined as

� = E − NEF �12�

and the excess grand potential due to the formation of sur-
face is given by

�s = � − V̄wbulk�bulk, �13�

where �bulk=�bulk−EF=−2EF /5 and V̄ is the volume of the
nanowire within a properly chosen dividing surface. The sur-
face can only be unambiguously defined for a planar semi-
infinite surface. In previous studies,27 a macroscopic number

of electrons, N̄, is also defined and could be understood

through the relation N̄=wbulkV̄.

III. RESULTS AND DISCUSSION

A. Asymptotic behavior

Before we discuss the shell structure of the metal nano-
wire, it is instructive to look at the asymptotic behavior for
large radii. The Weyl expansion is invaluable for this pur-
pose. For a smooth cavity, the wave-number density of
eigenmodes with the Dirichlet boundary condition is given
by33

g�k� =
k2

2�2V −
k

8�
S +

1

6�2C , �14�

where V and S are the volume and the surface area of the
cavity, respectively; C is the surface mean curvature, which
is defined as the surface integral over the arithmetic mean of
two-principle curvatures, K1 and K2, i.e., �dA 1

2 �K1+K2�. For
a cylindrical nanowire, one has V=�r2L, S=2�rL, and C
=�L. The number of electron is then given as

N � 

0

kf

2g�k�dk , �15�

where the factor of 2 is due to spin degeneracy of electrons.

Considering the constant-b model with r=R+ b̄, from Eq.
�15�, we obtain

� f

EF
= 1 + 	1

4
−

4

3
�̄
�−1 + 	 3

64
−

5�̄

12
+

14�̄2

9
−

1

6�2
�−2

+ O��−3� , �16�

where �̄� b̄ /�F. By letting �̄=3 /16 and neglecting the high-
order terms O��−3� for large radii, Eq. �16� becomes

� f

EF
� 1 +

0.00655

�2 . �17�

Note that there is no �−1 correction in Eq. �17�. The
asymptotic behavior of � f versus � from Eq. �17� is plotted
in Fig. 3 �the black curve in the inset of Fig. 3�a��.

For the excess energy, it is useful to separate it into a
planar surface-energy term and curvature energy term when
the liquid-drop model34 is used. Then, in the case of a nano-
wire, one has

Es = �pS +
1

2
�cC , �18�

where S is the surface area and C the mean surface curvature
with a suitably chosen boundary. Here we use the geometric
boundary of the nanowire as the dividing surface, and then
S=2�RL and C=�L. Using Eq. �11� with the total energy

E = 

0

kf

2g�k�
�2

2me
k2dk , �19�

one can obtain the excess energy Es. Neglecting the high-
order terms O��−1� of Es for large radii and comparing with
Eq. �18� yields
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�p =
�EF

�F
2 	1

4
−

32

30
�̄
 �20�

and

�c =
EF

�F
	�

4
−

8

9�
−

5

3
��̄ +

224

45
��̄2
 . �21�

Note that �c is always positive for any �̄�0. For �̄=3 /16,
one has �p=�EF / �20�F

2���bf �i.e., the surface free energy
corresponding to the bulk film10�, and �c=0.0705EF /�F.
Thus, considering Eqs. �11� and �18�, one can obtain

� = �p +
�c

4R
� �bf	1 +

0.1122

�

 . �22�

The asymptotic behavior of � versus � from Eq. �22� is
plotted in Fig. 3 �the black curve in the inset of Fig. 3�b��. To

compare the results from the above analysis with previous
stabilized jellium model �SJM�, in Table I we list �p and �c
from Perdew et al.,35 Ziesche et al.,36 and in Eq. �22�. The
agreement is satisfactory, and particularly, the agreement for
Na and Cs is better than Al, indicating that the noninteracting
electron-gas model is a good approximation to the interact-
ing jellium model for the low-electron-density metals, see
Table I for the bulk-metal average electron-density wbulk val-
ues of Al, Na, and Cs.

For the grand-canonical ensemble with constants � f =EF
and kf =kF in Eqs. �15� and �19�, the result for N and � are
already obtained by Stafford et al.27 For the surface excess
grand potential, one needs to determine the dividing surface

satisfying N̄= V̄ /wbulk. A natural choice for N̄ is the expres-
sion of N derived from the Weyl expansion.27 Using this
choice, one can easily show that

�s

EFL/�F
�

�2�

10
−

8

45
, �23�

where ��r /�F. This particular result for the EGM in a grand
ensemble was derived previously in Ref. 29. Note that the
linear term of r in Eq. �23� is the same as that of the
constant-b model with b=3�F /16, but the constant term
�which is related to the curvature energy� is now negative.
More results with a parametrized constraint �the generaliza-
tion of the Weyl-expansion expression� are also obtained in
Ref. 31.

It should be also noted that the planar surface energy �p is

rather sensitive to the choice of �̄ as indicated in Eq. �20�,
e.g., when �̄=0 is chosen, i.e., the potential wall coincides
with the geometric wall �no electronic charge spilling�, the

�p value becomes five times as big as that of �̄=3 /16. In

contrast to the results of taking �̄=0 in the EGM, taking �̄
=3 /16 as a benchmark value seems to be rather reasonable
when we compare the result from the EGM with those from
the SJM and first-principles DFT calculations, as will be
shown in the following sections.

On the other hand, the curvature energy in the EGM de-
pends on the details of the model, which can be ambiguous
for a metal nanowire. For example, for the canonical-
ensemble model, while it is certain that b should approach
3�F /16 as R→� to avoid the surface charge, the assumption

of b= b̄ is less well justified. Similarly, in the grand-
canonical-ensemble model, there can be other reasonable
choices for the Gibbs surface that can give different curva-

TABLE I. Planar surface energy �p and curvature energy �c from the SJM �Refs. 35 and 36� and our
asymptotic analysis �Eq. �22��. Wigner-Seitz radius rs is in unit of Bohr radius aB; bulk-metal average
electron density wbulk is in unit of aB

−3�10−3; �p and �c are in units of meV /aB
2 and meV /aB, respectively.

Metal rs wbulk

�p in
Ref. 35

�p in
Ref. 36

�p in
Eq. �22�

�c in
Ref. 35

�c in
Ref. 36

�c in
Eq. �22�

Al 2.07 26.92 16.19 16.15 40.00 49.8 44.5 121.64

Na 3.93 3.933 3.13 3.14 3.78 9.84 9.54 17.77

Cs 5.62 1.345 1.03 1.06 0.74 3.67 3.84 6.08

FIG. 3. �Color online� �a� Fermi energy level � f and eigenener-
gies �n,�l�, �b� surface free energy �, �c� first derivative of �, and �d�
second derivative of � versus nanowire radius R. Subband crossings
are marked by green vertical dashed-dotted lines. The insets in �a�
and �b� are the rescalings of �a� and �b� with the black solid curves
from the asymptotic formulas of Eqs. �17� and �22�, respectively.
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ture energies. At this stage, it is unclear to us whether an
unambiguous curvature energy can be derived in the EGM.

Finally, we note that the choice of different constraints
during metal deformation has been proposed to adapt the
EGM to specific materials in Ref. 31. It will be interesting to
explore this concept and apply it to the canonical-ensemble
model also. The planar surface energy and curvature energy
for the metals with high electron density cannot be well de-
scribed by the constant-b model, as discussed above, even

though the value of b̄ is, in principle, adjustable. For ex-
ample, considering the slightly larger charge spilling for the

high-electron-density metals,37 we can choose �̄�0.215 to

fit the SJM planar surface energy of Al, but this value of �̄
results in an even larger curvature energy than that in Table I.
In order to fit the EGM model to specific metals, the
potential-well radius could be thus assumed to be a modified
form, e.g., like r=R+b+c /R, where c is a specimen-
dependent parameter. However, this could not be critical
when one analyzes the shell structure and phase relations in
electronic properties for a metal nanowire.

B. Shell structure

Now consider the oscillation features and phase relations
in the electronic shell structure of a metal nanowire as well
as the dynamic properties. The Fermi energy level � f versus
R from Eq. �7� is plotted as the red solid curve in Fig. 3�a�.
The curve exhibits oscillatory damping around the bulk
Fermi Energy EF and the asymptotic behavior toward large
radii is described well by Eq. �17�, as indicated by the black
solid curve in the inset of Fig. 3�a�. At the subband �i.e.,
eigenenergy �n,�l� crossing positions �I=1,2,. . ., the curve is C0

continuous �i.e., the curve is continuous but the correspond-
ing first derivative discontinuous�, and cusps appear as a se-
ries of local maxima. In contrast to metal nanofilms8,10 for
which the distance � between any two neighboring cusps,
i.e., the oscillation period, is approximately a constant value
��F /2, the oscillation “period” � for metal nanowires is
radius dependent, as shown in Fig. 3�a�.

The surface free energy �=E−N�bulk calculated from Eq.
�11� with Eqs. �6� and �9� is plotted in Fig. 3�b�. As R in-
creases, � exhibits decaying oscillations. The asymptotic be-
havior toward large radii agrees well with the formula of Eq.
�22�, as indicated by the black solid curve in the inset of Fig.
3�b�. While � ultimately approaches the bulk film value �bulk,
we can see significant deviation from the bulk value even as
far as R�4�F, suggesting importance of the curvature en-
ergy term. This result is in very good agreement with the
calculations based on the SJM.21 In addition, beats appear on
the � curve, which have been previously described as the
superposition of a couple of dominant orbital frequencies
from the Fourier analysis with a semiclassical model.18,22

An important difference between the curves of � and � f
versus R is that on the � curve, the � values at the positions
�I=1,2,. . . correspond to a series of left inflexions of local
maxima instead of the cusps on the � f curve. For nanofilms
where the oscillation is approximately periodic, this gives
rise to an offset by �� /4 in the oscillation phases of � and
� f. This phase relation can also be confirmed from the syn-

chronization between the curves of � f and �� �the first de-
rivative of � with respect to �, plotted in Fig. 3�c�� versus R.
The � curve at the subband crossings is C1 continuous, i.e.,
�� is continuous but the corresponding second derivative ��
discontinuous, as shown in Figs. 3�c� and 3�d�. The value of
�� can reflect the thermodynamic stability of a nanowire. A
generalized Nichols-Mullins model38 for surface diffusion
predicts that the stability coefficient is proportional to S
=��+�� /R−� /R2��� for longitudinal perturbations. If S
�0, the corresponding nanowire is stable, and if S�0, the
nanowire is unstable. An expression equivalent to this crite-
rion �cf. Eq. �7� in Ref. 29� is also obtained previously by
Zhang et al. In terms of such criterion, from Fig. 3�d�, the
stable radii �in unit of �F� lie in the ranges �0.20, 0.36�,
�0.47, 0.59�, �0.66, 0.68�, �0.72, 0.80�, �0.86, 0.92�, �0.96,
1.01�, �1.05, 1.14�,…, and other radii are unstable. Generally,
two ends of a metal nanowire fabricated in
experiments11,12,17–19 are in good electrical contact with two
macroscopic metal electrodes, i.e., the nanowire can behave
as an open system with exchange of electrons between the
nanowire and the electrodes. For metal nanowires with good
conductivity, Coulomb interactions lead to charge screening
so that the local charge neutrality is a good approximation
even for a relatively short nanowire,39 and thus the nanowire
can be approximately treated as a closed system. Charge
fluctuations and screening effects are also investigated by
Kassubek et al.,40 who shows that for the nanowires with
poor conductivity or large capacitance, charge screening can
be weak, and then the effects of boundaries cannot be ne-
glected. In the Au nanowire fabrication experiments of
Kondo and Takayanagi11 as well as Oshima et al.,12 the ob-
served stable radii �in unit of �F,Au=0.52 nm� are around the
values of 0.38, 0.56, 0.85, 0.92, 0.99, 1.09, 1.15,… No stable
nanowires are observed in some regions �i.e., the instability
gaps�, e.g., noticeably at the ranges �0.40, 0.50� and �0.58,
0.72�. Note that the tiny stable range �0.66, 0.68� from Fig.
3�d� is not significant due to the corresponding small �� val-
ues. Thus, the thermodynamic stability from the model is in
good agreement with that from the experiments. Since the
stability pattern of a metal nanowire mainly originates from
the oscillatory part in the surface energetics, the stable radii
and instability gaps predicted from the above canonical-
ensemble model is basically identical to the results obtained
previously by Zhang et al. using the grand-canonical-
ensemble model.29–31 In their model, the effects of tempera-
ture and noncylindrical geometrical deformation of a metal
nanowire are also included.

Next we describe the behavior of electron density. Figure
4�a� shows the three-dimensional �3D� plot of electron-
density distribution w��� versus nanowire radius R from Eq.
�10�. For any nanowire with a fixed R, w oscillates as the
function of �, exhibiting the Bardeen-Friedel oscillations,41

which are induced by the metal-vacuum surface, while for
any fixed position �, w oscillates as the function of R, exhib-
iting the QSE-induced oscillations. As two typical curves,
the surface electron density w��=R� and the center electron
density w��=0� versus R are plotted in Fig. 4�b�. All of them
have the cusps with the same positions as that of � f, as
marked by the vertical green lines in Figs. 3 and 4�b�. For
w��=0�, there is a remarkable oscillation feature that the
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“global” oscillation period is equal to ��F /2, as shown in
Fig. 4. The global minima on the red curve in Fig. 4�b�
correspond to the quantum numbers �l=0,n�, n=1,2 ,3 , . . .
from small to big. Note that in term of the diameter, the
period is ��F, being consistent with results for metal
nanofilms.10 For w��=R�, the oscillatory curve �the blue
curve in Fig. 4�b�� gradually approaches to the constant �
=0.4557. . ., the electron density at the geometric surface for
a bulk film �cf. Fig. �a� in Ref. 10�.

The Fermi energy level � f is thermodynamically equiva-
lent to the chemical potential �. Because of the infinite
potential-well barrier used in this model, we cannot calculate
directly the work function W of a metal nanowire. Instead,
we calculate the negative increment of chemical potential
relative to the bulk limit: −��=−��−���=EF−� f, which
can be viewed as the “work function relative to the bulk
limit.”9 In order to visualize the phase relations, we plot the
curves �red solid� of � and −�� versus R in Fig. 5�a� �the
same as Fig. 3�b�� and Fig. 5�b�, respectively. There is again

an offset by �� /4 in the oscillation phases of � and −��, as
indicated by the green vertical dashed-dotted lines denoting
the subband crossings. This is obvious because the phases of
−�� and � f are opposite according to the definition of −��.
It should be mentioned that for a �more “realistic”� soft-wall
effective potential Ueff���, the work function should be ex-
pressed as W=�Ueff−� f, where �Ueff=Ueff��=��−Ueff��
=0�, which is the effective potential difference between at
infinity and at the nanowire center. In principle, the effective
potential Ueff could be obtained by self-consistently calculat-
ing the electron density and therefore the electrostatic poten-
tial plus the exchange-correlation part.8 Generally speaking,
�Ueff could be also oscillatory as a function of the size of a
nanostructure �e.g., nanofilm or nanowire�. Therefore, in or-
der to understand the phase relation between W and −�� as
well as other electronic properties, the specific self-consistent
calculations are desirable.

Let us also examine the elongation force of a metal nano-
wire. When a nanowire elongates, we assume that the “geo-
metric” or “jellium-background” volume V is conserved. In
terms of the surface free energy �, the elongation force F is
given as a function of the wire radius R as21

(a)

FIG. 4. �Color online� �a� The 3D plot of electron-density dis-
tribution w��� versus nanowire radius R from Eq. �10�. �b� Electron
densities w at the center and the geometric surface of nanowires
versus R. Subband crossings are marked by green vertical dashed-
dotted lines. Constant � is the electron density at the geometric
surface for a bulk film �Ref. 10�.

FIG. 5. �Color online� �a� Surface free energy �, �b� −�� �nega-
tive increment of chemical potential relative to the bulk limit�, and
�c� elongation force F versus nanowire radius R. Subband crossings
are marked by green vertical dashed-dotted lines. Dots on the
curves correspond to the R values available according to Jia et al.’s
DFT optimization calculations for Na helical nanowires �Ref. 15�.
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F = −�dE

dL
�

V
= −�d�2�RL��

dL
�

V
= − �R� + �R2 d�

dR
,

�24�

which is shown in Fig. 5�c�. The fluctuation of the elongation
force F can be calculated as

�F = F − �−
d�2�RL�bf�

dL
� = F + �R�bf, �25�

in which the second term is due to the increase in the surface
area when the nanowire elongates and is considered as a bulk
wire. The curve �red solid� of F versus R in Fig. 5�c� is in
good agreement with the results from Zabala et al.’s SJM
calculations for Al, Na, and Cs nanowires �see Fig. 5 in Ref.
21�. Again, the agreement for Na and Cs is remarkable, in-
dicating that for low electron densities, the noninteracting
electron-gas model is an excellent approximation to the in-
teracting jellium model. From Fig. 5, the phases of F and
−�� are opposite, and thus there is also an offset by �� /4
in the oscillation phases of � and F. Here we also note that
the elongation force and its fluctuation from Eqs. �24� and
�25� are very similar to results obtained previously in the
grand-canonical ensemble.24,25,27

It is possible to verify the above-predicted phase relations
by either measuring experimentally or calculating from DFT
the elongation force F, the work function W, and the ther-
modynamic stability. The latter is characterized by surface
free energy �, string tension f , or per electron energy �, and
these three quantities can be shown to possess the same
phase, while � f, −��, and F have the identical or opposite
phase �cf. Figs. 3�a�, 5�b�, and 5�c��. For a metal electron-gas
nanowire, the radius R is allowed to be continuous, as dis-
cussed above. For a real metal nanowire, the radius R is
discrete, and these allowable values of R depend on the type
of metal. For example, according to Jia et al.’s first-
principles DFT optimization calculations for Na helical
nanowires,15 the relatively favorable configurations can be
determined, and the corresponding discrete radii are marked
in Fig. 5 �as well as Fig. 7 below� by the dots on the curves.
Thus, from our present electron-gas model, �, −��, and F of
these Na helical nanowires will follow the dotted values con-
nected with blue, green, and gray dashed curves, as shown in
Figs. 5�a�–5�c�, respectively.

The above analysis focuses on a closed system. The metal
nanowires were also studied as an open system by using the
free-electron model.24–29 Although the overall shell struc-
tures from the closed and open systems are similar, we note
that in calculations of thermodynamic properties, various as-
sumptions about the compressibility of electron gas during
its deformation can lead to significant difference in macro-
scopic properties. Besides the curvature energy discussed in
Sec. III A, we find that for incompressible electron gas, the
subband crossings always correspond to the inflection points
on the surface-free-energy curve versus radius; for com-
pletely compressible electron gas in an open system, the sub-
band crossings correspond to the cusp positions on the
surface-free-energy curve versus radius �curves not shown
here�.

C. Comparison of results from EGM and DFT

To demonstrate the usefulness of the EGM for ultrathin
nanowires, let us also compare the results of the EGM with
first-principles DFT calculations existing in literature. Since
DFT calculations are performed for closed systems, we
therefore use the constant-b model here. The string tension
f =2�R� is shown as the red solid curve in Fig. 6�a�. The
string tensions from empirical-potential plus DFT optimiza-
tion calculations by Tosatti et al.14 for Ag and Au nanowires
with different radii and configurations are shown in Figs.
6�b� and 6�c�, respectively. The agreement between the red
solid curves and the available DFT data points is striking.
Especially, the helical configuration �7,3� for Ag or Au nano-
wire corresponds to a local minimum of the red curve, indi-
cating its magic stability.

The per electron energy � versus nanowire R is plotted as
the red solid curve in Fig. 7�a�, which is compared with the
average binding energy per atom from empirical-potential
plus first-principles DFT optimizations by Jia et al.15 for Na

FIG. 6. �Color online� String tensions versus nanowire radius R.
Red solid curve in �a� is obtained from f =2�R�, where � has been
already plotted in Fig. 3�b�. Data points in �b� and �c� are from DFT
calculations in Ref. 14 for Ag and Au nanowires with different radii
and configurations, respectively. Except the red solid curve in �a�,
all other lines are to guide the reader’s eyes. Blue dots on the red
solid curve correspond to the R values available in above DFT
calculations, as marked by gray vertical lines. For all nanowire
configuration details, see Ref. 14.
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helical nanowires �more favorable than other configurations�
with different radii. The agreement between the red solid
curve and these DFT data points is also striking. According
to Jia et al.’s DFT optimization calculations,15 no stable con-
figurations can be found between two radii of H0-2 and H0-3
as well as of H0-4 and H0-5. This is consistent with the red
solid curve in Fig. 7�b�, where the parts of the curve corre-
sponding to these radius regions are around the maxima of
the curve.

Here we also mention that if the charge-neutrality require-
ment is ignored, i.e., b is simply set to be zero, the significant
deviations from the curves of various physical properties ver-
sus radius will appear. For example, as discussed in Sec.
III A, the surface free energy � is very sensitive to the choice
of b. From Eqs. �20� and �21�, the asymptotic curve toward

large radii for b=0 becomes �=�bulk�5+0.7997 /�� �cf. Eq.
�22��; also, when b=0, the curve of � versus R �not shown�
does not exhibit any oscillations �cf. Fig. 7�a� for b
=3�F /16� so that there are no minima or maxima on the
curve. Therefore, an appropriate choice of b satisfying the
charge-neutrality requirement is important, as discussed in
Sec. II.

Finally, we briefly explore a transport property. According
to Landauer’s multichannel formula,42 the conductance G
can be roughly estimated by

G/G0 � �
j=1

I

j =
I�I + 1�

2
, �26�

where G0�2e2 /h is the quantum of conductance. Thus, the
curve of G versus R is simply stepwise, as shown in Fig.
7�c�. This is reasonably consistent with the results �Fig. 7�d��
from Jia et al.’s DFT calculations for Na nanowires.15

IV. CONCLUSION

In conclusion, an electron-gas model has been developed
to investigate the oscillation behavior of various physical
properties for a metal nanowire. Analysis of the model re-
veals that the electronic shell structure induces oscillations in
various electronic properties with different phases. The basic
behavior exhibited by our electron-gas model can be under-
stood in terms of a correspondence between the local
maxima �cusps� in the Fermi energy �which is related to the
chemical potential or work function� and the inflection points
located at the left of the local maxima of the surface free
energy, as shown in Fig. 3. The model also predicts an oscil-
latory feature of electron density versus radius at the nano-
wire center with a global oscillation period which approxi-
mately equals half Fermi wavelength. By comparing with the
previous free-electron models with constant chemical poten-
tial, we find that the main difference in our variable
chemical-potential model is in the asymptotic behavior of
surface energetics rather than the oscillatory features. In ad-
dition, the choice of potential-well boundary in the canonical
ensemble or of constraints during deformation in the grand-
canonical ensemble can also sensitively affect the asymptotic
behavior, as noted previously by Urban et al.31 within a
grand-canonical-ensemble free-electron model.
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FIG. 7. �Color online� �a� Per electron energy versus R from
�=E /N with N and E expressed in Eqs. �6� and �9�, respectively.
�b� Average �per atom� binding energy Eb versus R from first-
principles DFT calculations in Ref. 15 for Na nanowires with dif-
ferent radii and configurations. �c� Conductance G versus R from
Eq. �26�. �d� Conductance G versus R from the same DFT calcula-
tions as in �b�. Except the red solid curves, all other lines are to
guide the reader’s eyes. Blue dots on the red solid curves corre-
spond to the R values available in above DFT calculations, as
marked by gray vertical lines. For all nanowire configuration de-
tails, see Ref. 15.

YONG HAN AND DA-JIANG LIU PHYSICAL REVIEW B 82, 125420 �2010�

125420-8



*octavian2009@gmail.com
1 W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M.

Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 �1984�.
2 K. Clemenger, Phys. Rev. B 32, 1359 �1985�.
3 M. L. Cohen and W. D. Knight, Phys. Today 43�12�, 42 �1990�.
4 W. A. de Heer, Rev. Mod. Phys. 65, 611 �1993�.
5 M. Brack, Rev. Mod. Phys. 65, 677 �1993�.
6 T. P. Martin, Phys. Rep. 273, 199 �1996�.
7 V. Lindberg and B. Hellsing, J. Phys.: Condens. Matter 17,

S1075 �2005�.
8 F. K. Schulte, Surf. Sci. 55, 427 �1976�.
9 T. Miller, M. Y. Chou, and T.-C. Chiang, Phys. Rev. Lett. 102,

236803 �2009�.
10 Y. Han and D.-J. Liu, Phys. Rev. B 80, 155404 �2009�.
11 Y. Kondo and K. Takayanagi, Science 289, 606 �2000�.
12 Y. Oshima, A. Onga, and K. Takayanagi, Phys. Rev. Lett. 91,

205503 �2003�.
13 O. Gülseren, F. Ercolessi, and E. Tosatti, Phys. Rev. Lett. 80,

3775 �1998�.
14 E. Tosatti, S. Prestipino, S. Kostlmeier, A. D. Corso, and F. D. D.

Tolla, Science 291, 288 �2001�.
15 J. Jia, D. Shi, B. Wang, and J. Zhao, Phys. Rev. B 74, 205420

�2006�.
16 Y. Han, Fron. Phys. China 3, 436 �2008�.
17 N. Agraït, G. Rubio, and S. Vieira, Phys. Rev. Lett. 74, 3995

�1995�.
18 A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev.

Lett. 84, 5832 �2000�.
19 A. I. Mares and J. M. van Ruitenbeek, Phys. Rev. B 72, 205402

�2005�.
20 C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B

57, 4872 �1998�.
21 N. Zabala, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 59,

12652 �1999�.
22 M. J. Puska, E. Ogando, and N. Zabala, Phys. Rev. B 64,

033401 �2001�.
23 E. Ogando, N. Zabala, and M. J. Puska, Nanotechnology 13, 363

�2002�.
24 C. A. Stafford, D. Baeriswyl, and J. Bürki, Phys. Rev. Lett. 79,

2863 �1997�.
25 S. Blom, H. Olin, J. L. Costa-Krämer, N. García, M. Jonson, P.

A. Serena, and R. I. Shekhter, Phys. Rev. B 57, 8830 �1998�.
26 A. M. Zagoskin, Phys. Rev. B 58, 15827 �1998�.
27 C. A. Stafford, F. Kassubek, J. Bürki, and H. Grabert, Phys. Rev.

Lett. 83, 4836 �1999�.
28 E. N. Bogachek, A. G. Scherbakov, and U. Landman, Phys. Rev.

B 62, 10467 �2000�.
29 C.-H. Zhang, F. Kassubek, and C. A. Stafford, Phys. Rev. B 68,

165414 �2003�.
30 D. F. Urban, J. Bürki, C.-H. Zhang, C. A. Stafford, and H. Grab-

ert, Phys. Rev. Lett. 93, 186403 �2004�.
31 D. F. Urban, J. Bürki, C. A. Stafford, and H. Grabert, Phys. Rev.

B 74, 245414 �2006�.
32 J. Bardeen, Phys. Rev. 49, 653 �1936�.
33 M. Brack and R. K. Bhaduri, Semiclassical Physics, Frontiers in

Physics Vol. 96 �Addison-Wesley, Reading, MA, 1997�.
34 J. P. Perdew, Y. Wang, and E. Engel, Phys. Rev. Lett. 66, 508

�1991�.
35 J. P. Perdew, P. Ziesche, and C. Fiolhais, Phys. Rev. B 47, 16460

�1993�.
36 P. Ziesche, M. J. Puska, T. Korhonen, and R. M. Nieminen, J.

Phys.: Condens. Matter 5, 9049 �1993�.
37 N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 �1970�.
38 F. A. Nichols and W. W. Mullins, Trans. Metall. Soc. AIME 233,

1840 �1965�.
39 J. M. van Ruitenbeek, M. H. Devoret, D. Esteve, and C. Urbina,

Phys. Rev. B 56, 12566 �1997�.
40 F. Kassubek, C. A. Stafford, and H. Grabert, Phys. Rev. B 59,

7560 �1999�.
41 V. Sahni �private communication�; also see Ref. 10, and Quantal

Density Functional Theory II: Approximation Methods and Ap-
plications �Springer-Verlag, Berlin, 2010�.

42 R. Landauer, IBM J. Res. Dev. 1, 223 �1957�.

SHELL STRUCTURE AND PHASE RELATIONS IN… PHYSICAL REVIEW B 82, 125420 �2010�

125420-9

http://dx.doi.org/10.1103/PhysRevLett.52.2141
http://dx.doi.org/10.1103/PhysRevB.32.1359
http://dx.doi.org/10.1063/1.881220
http://dx.doi.org/10.1103/RevModPhys.65.611
http://dx.doi.org/10.1103/RevModPhys.65.677
http://dx.doi.org/10.1016/0370-1573(95)00083-6
http://dx.doi.org/10.1088/0953-8984/17/13/004
http://dx.doi.org/10.1088/0953-8984/17/13/004
http://dx.doi.org/10.1016/0039-6028(76)90250-8
http://dx.doi.org/10.1103/PhysRevLett.102.236803
http://dx.doi.org/10.1103/PhysRevLett.102.236803
http://dx.doi.org/10.1103/PhysRevB.80.155404
http://dx.doi.org/10.1126/science.289.5479.606
http://dx.doi.org/10.1103/PhysRevLett.91.205503
http://dx.doi.org/10.1103/PhysRevLett.91.205503
http://dx.doi.org/10.1103/PhysRevLett.80.3775
http://dx.doi.org/10.1103/PhysRevLett.80.3775
http://dx.doi.org/10.1126/science.291.5502.288
http://dx.doi.org/10.1103/PhysRevB.74.205420
http://dx.doi.org/10.1103/PhysRevB.74.205420
http://dx.doi.org/10.1007/s11467-008-0037-8
http://dx.doi.org/10.1103/PhysRevLett.74.3995
http://dx.doi.org/10.1103/PhysRevLett.74.3995
http://dx.doi.org/10.1103/PhysRevLett.84.5832
http://dx.doi.org/10.1103/PhysRevLett.84.5832
http://dx.doi.org/10.1103/PhysRevB.72.205402
http://dx.doi.org/10.1103/PhysRevB.72.205402
http://dx.doi.org/10.1103/PhysRevB.57.4872
http://dx.doi.org/10.1103/PhysRevB.57.4872
http://dx.doi.org/10.1103/PhysRevB.59.12652
http://dx.doi.org/10.1103/PhysRevB.59.12652
http://dx.doi.org/10.1103/PhysRevB.64.033401
http://dx.doi.org/10.1103/PhysRevB.64.033401
http://dx.doi.org/10.1088/0957-4484/13/3/324
http://dx.doi.org/10.1088/0957-4484/13/3/324
http://dx.doi.org/10.1103/PhysRevLett.79.2863
http://dx.doi.org/10.1103/PhysRevLett.79.2863
http://dx.doi.org/10.1103/PhysRevB.57.8830
http://dx.doi.org/10.1103/PhysRevB.58.15827
http://dx.doi.org/10.1103/PhysRevLett.83.4836
http://dx.doi.org/10.1103/PhysRevLett.83.4836
http://dx.doi.org/10.1103/PhysRevB.62.10467
http://dx.doi.org/10.1103/PhysRevB.62.10467
http://dx.doi.org/10.1103/PhysRevB.68.165414
http://dx.doi.org/10.1103/PhysRevB.68.165414
http://dx.doi.org/10.1103/PhysRevLett.93.186403
http://dx.doi.org/10.1103/PhysRevB.74.245414
http://dx.doi.org/10.1103/PhysRevB.74.245414
http://dx.doi.org/10.1103/PhysRev.49.653
http://dx.doi.org/10.1103/PhysRevLett.66.508
http://dx.doi.org/10.1103/PhysRevLett.66.508
http://dx.doi.org/10.1103/PhysRevB.47.16460
http://dx.doi.org/10.1103/PhysRevB.47.16460
http://dx.doi.org/10.1088/0953-8984/5/49/007
http://dx.doi.org/10.1088/0953-8984/5/49/007
http://dx.doi.org/10.1103/PhysRevB.1.4555
http://dx.doi.org/10.1103/PhysRevB.56.12566
http://dx.doi.org/10.1103/PhysRevB.59.7560
http://dx.doi.org/10.1103/PhysRevB.59.7560
http://dx.doi.org/10.1147/rd.13.0223

